Четверг, 17.07.2025, 05:36
Каталог сайтов

 Python #2

Поиск
Для поиска по сайту введите Ваш запрос в поле ниже и нажмите кнопку Enter.


Меню сайта
Информация
Партнеры
all-world.org.ru

Free Website Builder
The Free Encyclopedia
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Календарь
«  Июль 2025  »
ПнВтСрЧтПтСбВс
 123456
78910111213
14151617181920
21222324252627
28293031
Обработка исключений

Обработка исключений поддерживается в Python посредством операторов try, except, else, finally, raise, образующих блок обработки исключения. В общем случае блок выглядит следующим образом:

try:
  # Здесь код, который может вызвать исключение
  raise Exception("message") # Exception, это один из стандартных типов исключения (всего лишь класс),
  # может использоваться любой другой, в том числе свой
except (Тип исключения1, Тип исключения2, …), Переменная:
  # Код в блоке выполняется, если тип исключения совпадает с одним из типов
  # (Тип исключения1, Тип исключения2, …) или является наследником одного
  # из этих типов.
  # Полученное исключение доступно в необязательной Переменной.
except (Тип исключения3, Тип исключения4, …), Переменная:
  # Количество блоков except не ограниченно
  raise # Сгенерировать исключение "поверх" полученного; без параметров - повторно сгенерировать полученное
except:
  # Будет выполнено при любом исключении, не обработанном типизированными блоками except
else:
  # Код блока выполняется, если не было поймано исключений.
finally:
  # Будет исполнено в любом случае, возможно после соответствующего
  # блока except или else

Итераторы

В программах на Питоне широко используются итераторы. Цикл for может работать как с последовательностью, так и с итератором. Все коллекции, как правило, предоставляют итератор. Объекты определённого пользователем класса тоже могут быть итераторами. Подробнее об итераторах можно узнать в разделе о функциональном программировании. Модуль itertools стандартной библиотеки содержит много полезных функций для работы с итераторами.

Генераторы

Одной из интересных возможностей языка являются генераторы — функции, сохраняющие внутреннее состояние: значения локальных переменных и текущую инструкцию (см. также: сопрограммы). Генераторы могут использоваться как итераторы для структур данных и для ленивых вычислений. См. пример: генератор чисел Фибоначчи.

При вызове генератора функция немедленно возвращает объект-итератор, который хранит текущую точку исполнения и состояние локальных переменных функции. При запросе следующего значения (посредством метода next(), неявно вызываемого в for цикле) генератор продолжает исполнение функции от предыдущей точки останова до следующего оператора yield или return.

В Python 2.4 появились генераторные выражения — выражения, дающие в результате генератор. Генераторные выражения позволяют сэкономить память там, где иначе требовалось бы использовать список с промежуточными результатами:

>>> sum(i for i in xrange(1, 100) if i % 2 != 0)
2500

В этом примере суммируются все нечётные числа от 1 до 99.

Начиная с версии 2.5, Python поддерживает полноценные сопроцедуры: теперь в генератор можно передавать значения с помощью метода send() и возбуждать в его контексте исключения с помощью метода throw().

Управление контекстом выполнения

В Python 2.5 появились средства для управления контекстом выполнения блока кода — оператор with и модуль contextlib. См.: пример.

Оператор может применяться в тех случаях, когда до и после некоторых действий должны обязательно выполняться некоторые другие действия, независимо от возбуждённых в блоке исключений или операторов return: файлы должны быть закрыты, ресурсы освобождены, перенаправление стандартного ввода вывода закончено и т. п. Оператор улучшает читаемость кода, а значит, помогает предотвращать ошибки.

Декораторы

Начиная с версии 2.4, Python позволяет использовать т. н. декораторы (не следует путать с одноимённым шаблоном проектирования) для поддержки существующей практики преобразования функций и методов в месте определения (декораторов может быть несколько). После долгих дебатов для декораторов стал использоваться символ @ в строках, предшествующих определению функции или метода. Следующий пример содержит описание статического метода без применения декоратора:

def myWonderfulMethod():
  return "Некоторый метод"
myWonderfulMethod = staticmethod(myWonderfulMethod)

и с помощью декоратора:

@staticmethod
def myWonderfulMethod():
  return "Некоторый метод"

Декоратор является ничем иным, как функцией, получающей в качестве первого аргумента декорируемую функцию или метод. Декораторы можно считать элементом аспектно-ориентированного программирования.

С версии 2.6 декораторы можно использовать с классами, аналогично функциям.

Другие возможности

В Python есть ещё несколько возможностей, отличающих его от многих других языков высокой гибкостью и динамичностью.

Например, класс является объектом, а в операторе определения класса можно использовать выражения в списке родительских классов.

def getClass():
  return dict
class D(getClass()):
  pass
d = D()

Можно модифицировать многие объекты во время исполнения, например классы:

>>> class X(object): pass

>>> y = X()
>>> y.wrongMethod() # такого метода пока нет
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'X' object has no attribute 'wrongMethod'
>>> X.wrongMethod = lambda self : 'im here' # добавим его
>>> y.wrongMethod() # так как доступ к методу приводит к поиску по __dict__ класса,
'im here' # то wrongMethod становится доступным всем экземплярам

Библиотеки

Стандартная библиотека

Богатая стандартная библиотека является одной из привлекательных сторон Питона. Здесь имеются средства для работы со многими сетевыми протоколами и форматами Интернета, например, модули для написания HTTP-серверов и клиентов, для разбора и создания почтовых сообщений, для работы с XML и т. п. Набор модулей для работы с операционной системой позволяет писать кросс-платформенные приложения. Существуют модули для работы с регулярными выражениями, текстовыми кодировками, мультимедийными форматами, криптографическими протоколами, архивами, сериализации данных, поддержка юнит-тестирования и др.

Модули расширения и программные интерфейсы

Помимо стандартной библиотеки существует множество библиотек, предоставляющих интерфейс ко всем системным вызовам на разных платформах; в частности, на платформе Win32 поддерживаются все вызовы Win32 API, а также COM в объёме не меньшем, чем у Visual Basic или Delphi. Количество прикладных библиотек для Python в самых разных областях без преувеличения огромно (веб, базы данных, обработка изображений, обработка текста, численные методы, приложения операционной системы и т. д.).

Для Python принята спецификация программного интерфейса к базам данным DB-API 2 и разработаны соответствующие этой спецификации пакеты для доступа к различным СУБД: PostgreSQL, Oracle, Sybase, Firebird (Interbase), Informix, Microsoft SQL Server, MySQL и sqlite. На платформе Microsoft Windows доступ к БД возможен через ADO (ADOdb). Коммерческий пакет mxODBC для доступа к СУБД через ODBC для платформ Windows и UNIX разработан eGenix. Для Питона написано много ORM (SQLObject, SQLAlchemy, Dejavu, Django), выполнены программные каркасы для разработки веб-приложений (Django, Pylons).

Библиотека NumPy для работы с многомерными массивами позволяет достичь производительности научных расчётов, сравнимой со специализированными пакетами. SciPy использует NumPy и предоставляет доступ к обширному спектру математических алгоритмов (матричная алгебра — BLAS, level 1-3 и LAPACK; БПФ). Numarray специально разработан для операций с большими объёмами научных данных.

На стадии разработки находится WSGI — интерфейс шлюза с веб-сервером (Python Web Server Gateway Interface).

Python предоставляет простой и удобный программный интерфейс C API для написания собственных модулей на языках Си и Си++. Такой инструмент как SWIG позволяет почти автоматически получать привязки для использования C/C++ библиотек в коде на Питоне. Возможности этого и других инструментов варьируются от автоматической генерации (C/C++/Fortran)-Python интерфейсов по специальным файлам (SWIG, pyste, SIP, pyfort), до предоставления более удобных API (boost::python, CXX и др.). Инструмент стандартной библиотеки ctypes позволяет программам Питона напрямую обращаться к динамическим библиотекам/DLL, написанным на C. Существуют модули, позволяющие встраивать код на С/C++ прямо в исходные файлы Python, создавая расширения «на лету» (pyinline, weave).

Другой подход состоит во встраивании интерпретатора Python в приложения. Python легко встраивается в программы на Java, C/C++, Ocaml. Взаимодействие Python-приложений с другими системами возможно также с помощью CORBA, XML-RPC, SOAP, COM.

С помощью Pyrex возможна компиляция Python-подобного языка (добавлена возможность типизации) в эквивалентный Си-код и связывание с внешними модулями.

Экспериментальный проект shed skin предполагает создание компилятора для трансформации неявно типизированных Python программ в оптимизированный С++ код. Начиная с версии 0.22 shed skin позволяет компилировать отдельные функции в модули расширений. Полная компиляция (по состоянию на 1 июля2007 года) далека от завершения.

Python и подавляющее большинство библиотек к нему бесплатны и поставляются в исходных кодах. Более того, в отличие от многих открытых систем, лицензия никак не ограничивает использование Python в коммерческих разработках и не налагает никаких обязательств кроме указания авторских прав.

Графические библиотеки

С Питоном поставляется библиотека tkinter на основе Tcl/Tk для создания кроссплатформенных программ с графическим интерфейсом.

Существуют расширения, позволяющие использовать все основные GUI библиотеки — wxPython, основанное на библиотеке wxWidgets, PyGTK для Gtk, PyQt и PySide для Qt и другие. Некоторые из них также предоставляют широкие возможности по работе с базами данных, графикой и сетями, используя все возможности библиотеки, на которой основаны.

Для создания игр и приложений, требующих нестандартного интерфейса, можно использовать библиотеку Pygame. Она также предоставляет обширные средства работы с мультимедиа: с её помощью можно управлять звуком и изображениями, воспроизводить видео. Предоставляемое pygame аппаратное ускорение графики OpenGL имеет более высокоуровневый интерфейс по сравнению с PyOpenGL, копирующей семантику С-библиотеки для OpenGL. Есть также PyOgre, обеспечивающая привязку к Ogre — высокоуровневой объектно-ориентированной библиотеке 3D-графики. Кроме того, существует библиотека pythonOCC, обеспечивающая привязку к среде 3D-моделирования и симуляции OpenCascade.

Для работы с растровой графикой используется библиотека Python Imaging Library.

Профилирование и оптимизация кода

В стандартной библиотеке Python имеется профайлер (модуль profile), который можно использовать для сбора статистики о времени работы отдельных функций. Для решения вопроса о том, какой вариант кода работает быстрее, можно использовать модуль timeit. Производимые в следующей программе измерения позволяют выяснить, какой из вариантов конкатенации строк более эффективен:

from timeit import Timer
def case1(): # А. инкрементальные конкатенации в цикле
  s = ""
  for i in range(10000):
  s += str(i)
   
def case2(): # Б. через промежуточный список и метод join
  s = []
  for i in range(10000):
  s.append(str(i))
  s = "".join(s)
   
def case3(): # В. списковое выражение и метод join
  return "".join([str(i) for i in range(10000)])
   
def case4(): # Г. генераторное выражение и метод join
  return "".join(str(i) for i in range(10000))
   
for v in range(1,5):
  print (Timer("func()","from __main__ import case%s as func" % v).timeit(200))

Как и в любом языке программирования, в Питоне имеются свои приемы оптимизации кода. Оптимизировать код можно исходя из различных (часто конкурирующих друг с другом) критериев (увеличение быстродействия, уменьшение объёма требуемой оперативной памяти, компактность исходного кода и т. д.). Чаще всего программы оптимизируют по времени исполнения.

Здесь есть несколько очевидных правил:

  • Не нужно оптимизировать программу, если скорость её выполнения достаточна.
  • Используемый алгоритм имеет определённую временную сложность, поэтому перед оптимизацией кода программы стоит сначала пересмотреть алгоритм.
  • Стоит использовать готовые и отлаженные функции и модули, даже если для этого нужно немного обработать данные. Например, в Питоне есть встроенная функция sort().
  • Профилирование поможет выяснить узкие места. Оптимизацию нужно начинать с них.

Python имеет следующие особенности и связанные с ними правила оптимизации:

  • Вызов функций является достаточно дорогостоящей операцией, поэтому внутри вложенных циклов нужно стараться избегать вызова функций или, например, переносить цикл в функции. Функция, обрабатывающая последовательность, эффективнее, чем обработка той же последовательности в цикле вызовом функции.
  • Старайтесь вынести из глубоко вложенного цикла всё, что можно вычислить во внешних циклах. Доступ к локальным переменным более быстрый, чем к глобальным, или чем доступ к полям.
  • Оптимизатор psyco может помочь ускорить работу модуля программы при условии, что модуль не использует динамических свойств языка Питон.
  • В случае, если модуль проводит массированную обработку данных и оптимизация алгоритма и кода не помогает, можно переписать критические участки, скажем, на языке Си или Pyrex.

Инструмент под названием Pychecker поможет проанализировать исходный код на Питоне и выдать рекомендации по найденным проблемам (например, неиспользуемые имена, изменение сигнатуры метода при его перегрузке и т. п.). В ходе такого статического анализа исходного кода могут быть выявлены и ошибки. Pylint призван решать близкие задачи, но имеет уклон в сторону проверки стиля кода.

Сравнение с другими языками

Наиболее часто Python сравнивают с Perl и Ruby. Эти языки также являются интерпретируемыми и обладают примерно одинаковой скоростью выполнения программ. Как и Perl, Python может успешно применяться для написания скриптов (сценариев). Как и Ruby, Python является хорошо продуманной системой для ООП.

Средства функционального программирования частично позаимствованы из Scheme и Icon.

В среде коммерческих приложений скорость выполнения программ на Python часто сравнивают с Java-приложениями.

Несмотря на то, что Python обладает достаточно самобытным синтаксисом, одним из принципов дизайна этого языка является принцип наименьшего удивления.

Низкое быстродействие

Классический Питон, как и многие другие интерпретируемые языки, не применяющие, например, JIT-компиляторы, имеют общий недостаток — сравнительно невысокую скорость выполнения программ. Однако, в случае с Python этот недостаток компенсируется уменьшением времени разработки программы. В среднем, программа, написанная на Python, в 2-4 раза компактнее, чем её аналог на C++ или Java. Сохранение байт-кода (файлы .pyc и .pyo) позволяет интерпретатору не тратить лишнее время на перекомпиляцию кода модулей при каждом запуске, в отличие, например, от языка Perl. Кроме того, существует специальная JIT-библиотека psyco, позволяющая ускорить выполнение программ (однако приводящая к увеличению потребления оперативной памяти). Эффективность psyco сильно зависит от архитектуры программы.

Существуют проекты реализаций языка Python, вводящие высокопроизводительные виртуальные машины (ВМ) в качестве компилятора заднего плана. Примерами таких реализаций может служить PyPy, базирующийся на LLVM; более ранней инициативой является проект Parrot. Ожидается, что использование ВМ типа LLVM приведёт к тем же результатам, что и использование аналогичных подходов для реализаций языка Java, где низкая вычислительная производительность в основном преодолена.

Множество программ/библиотек для интеграции с другими языками программирования (см. выше) предоставляют возможность использовать другой язык для написания критических участков.

В самой популярной реализации языка Python интерпретатор довольно велик и более требователен к ресурсам, чем в аналогичных популярных реализациях Tcl, Forth, LISP или Lua, что ограничивает его применение во встроенных системах. Тем не менее, Python нашёл применение в КПК и некоторых моделях мобильных телефонов.

Отсутствие статической типизации

Статическая типизация уменьшает количество ошибок в коде, поскольку значительное число потенциальных ошибок может быть отловлено интерпретатором сразу же при компиляции в байт-код. Тем не менее есть мнение, что отсутствие статической типизации является не столько недостатком интерпретатора, сколько выбором дизайнера языка. Дело в том, что в Python принята так называемая «Утиная типизация». В силу этого типы передаваемых значений недоступны на этапе компиляции, и ошибки вроде AttributeError могут возникать во время исполнения. Отсутствие статической типизации также является одной из основных причин низкого быстродействия.

Существуют модули, которые позволяют контролировать типы параметров функций на этапе исполнения, например typecheck или method signature checking decorators. Необязательная декларация типов для параметров функции добавлена в для Python 3, интерпретатор при этом не проверяет типы, а только добавлять соответствующую информацию к метаданным функции для последующего использования этой информации модулями расширений.

Отсутствие статической типизации и некоторые другие причины не позволяют реализовать в Python механизм перегрузки функций на этапе компиляции. Возможности Python позволяют реализовать динамическую перегрузку на этапе исполнения, что, конечно, замедляет вызов, так как разрешение производится при каждом обращении и является, в общем случае, довольно сложной процедурой. Отсутствие перегрузки в Python стараются компенсировать использованием виртуальных функций.

len = lambda x : x.__len__() # это только пример

Реализации и описание, пример реализации простой перегрузки также есть в примерах программ на Python.

Перегрузка функций реализована различными сторонними библиотеками, в том числе PEAK предоставляет чрезвычайно богатый возможностями механизм перегрузки функций с использованием произвольных правил. Не принятые планы по поддержке перегрузки в Python3000, были частично реализованы в библиотеке overloading-lib.

Невозможность модификации встроенных классов

По сравнению с Ruby и некоторыми другими языками, в Python отсутствует возможность модифицировать встроенные классы, такие, как int, str, float, list и другие, что, однако, позволяет Python потреблять меньше оперативной памяти и быстрее работать. Ещё одной причиной введения такого ограничения является необходимость согласования с модулями расширения. Многие модули (в целях оптимизации быстродействия) преобразуют Python-объекты элементарных типов к соответствующим Си-типам вместо манипуляций с ними посредством Си-API.

Глобальная блокировка интерпретатора (GIL)

GIL (Global Interpreter Lock) — особенность, присущая CPython, Stackless и PyPy, но отсутствующая в Jython и IronPython. При своей работе основной интерпретатор Python постоянно использует большое количество потоково-небезопасных данных. В основном это словари, в которых хранятся атрибуты объектов и обращения к внешнему коду (написанному на С и т.п.). Во избежание разрушения этих данных при совместной модификации из разных потоков, перед началом исполнения нескольких инструкций (по умолчанию 100) поток интерпретатора захватывает GIL, а по окончании освобождает. Вследствие этого, в каждый момент времени в одном процессе интерпретатора Python может исполняться только один поток Python кода, даже если в компьютере имеется несколько процессоров или процессорных ядер (GIL также освобождается на время выполнения блокирующих операций, таких как ввод-вывод, изменения/проверка состояния синхронизирующих примитивов и других — таким образом, если один поток блокируется, другие могут исполняться). Была предпринята попытка перехода к более гранулированным синхронизациям, однако из-за частых захватов/освобождений блокировок эта реализация оказалась слишком медленной на однопоточных приложениях. В ближайшем будущем переход от GIL к другим техникам не предполагается по причине того, что по мнению автора языка Python Гвидо Россума однопоточных программ, ускоряемых GIL больше, чем многопоточных, которые GIL тормозит. Однако есть python-safethread — CPython без GIL и с некоторыми другими изменениями (по утверждениям его авторов, на однопоточных приложениях скорость соответствует 60-65 % от скорости оригинального CPython).

Эта проблема имеет два основных варианта решения. Первый — отказ от совместного использования изменяемых данных и вызовов внешнего кода. При этом данные дублируются в потоках и необходимость обеспечения их синхронизации (если таковая нужна) лежит на программисте. Этот подход ведёт к увеличению потребления оперативной памяти (однако не настолько сильно, как при использовании процессов в Windows - ибо для Unix не критично, процессы небольшие).

Второй подход — обеспечение более гранулированной синхронизации — для отдельных структур данных. В этом случае падает производительность вследствие увеличения числа освобождений/захватов блокировок.

Если необходимо параллельное исполнение нескольких потоков Python кода, то можно воспользоваться процессами, например, модулем processing, который имитирует семантику стандартного модуля threading, но использует процессы вместо потоков. Начиная с версии 2.6, модуль processing добавлен в стандартную библиотеку и переименован в multiprocessing. Есть множество модулей, упрощающих написание параллельных и/или распределённых приложений на Python, таких как parallelpython, Pypar, pympi и других. GIL освобождается при исполнении кода большинства расширений, например, NumPy/SciPy, позволяя на время расчётов исполняться другому Python потоку. Другим решением может быть использование IronPython или Jython, лишённых этой особенности классического Python.

В версии 3.2 будет внедрён изменённый GIL. Основные нововведения:

  • Переключение по таймауту, а не по количеству опкодов - в предыдущей версии GIL освобождался через каждые 100 операций. Но операция может выполняться от наносекунд, до долей секунд. В новой версии блокировка будет сниматься каждые 5 миллисекунд;
  • Уменьшение накладных расходов и увеличение эффективности в случае частых переключений - в некоторых системах (в основном в MacOS X) наблюдаются проблема с эффективностью блокировки, когда GIL уже захвачен: системные вызовы становятся дорогими. В новой версии задержки будут уменьшены;
  • Уменьшение задержек при переключении потоков благодаря введению механизма принудительного переключения потока и приоритетных запросов (когда поток выполняет приоритетный запрос, то GIL освобождается как можно быстрее).